

A Simplified Method To Predict Projectile Body Engraving

April 1999

Jeff Siewert
Systems Engineer
Arrow Tech Associates
1233 Shelburne Rd. Suite D-8
S. Burlington, Vt. 05403

802-865-3460

FAX: 802-865-3470

Email: jsiewert@prodas.com

Overview

- Background
- Literature Search
- Force Model
- Engraving Model Description
- Engraving Model "Calibration"
- General Comparison of Constant & Gain Twist Tubes
- Conclusions

Why Model Body Engraving?

If you can't get a bigger Target...

Body Engraving Leads To:

- Land Flattening
- Large Dispersion
- Increased Gas Blow-by

Resulting In Reduced Tube Life

Correlation of Body Engraving and Observed Tube Wear

If you can't get a bigger Target...

Tube Wear and Body Engraving Start At Similar Points

Background

- 155mm Paladin vs. Crusader
 - Muzzle Wear Increase With Constant Twist
- 30mm GAU-8/A
 - Constant Gain Twist W/ Thermally Expanded Tubes

Literature Search:

- In 175mm Howitzer, Body Engraving is Proportional to Volume of **Copper Worn at Muzzle Exit (Implies Leak)**
- Obturator Reduces / Eliminates Body Engraving
- Muzzle Wear & Body Engraving Are Related
- 155mm Fwd Bourrelet Force ~ 800 lbf / 0.001" @ 20 cal/rev; ~ 600 lbf / 0.001" @ 22.5 cal/rev
- "Max" CG offset ~ 0.010" (Yawsonde, wrt Bourrelets)
- Body Engraving Significantly Reduced in 30mm W/ Gain Twist BBLS
- Band Wear is a function of Band Melt Temperature

Force Model

 $aF_B = m \varepsilon \ddot{s} + m \varepsilon \dot{\alpha}^2 \lambda$

FR = ${}^{\varepsilon}I_a$ [m $\dot{\alpha}^2$ (a - λ) - m \ddot{s}]

Where:

 ε = CG Offset

s = Inbore Travel

NDIA 4-99

7

Engraving Model Theory

If you can't get a bigger Target...

Body Engraving (BE) is the result of:

- Contact Stress Between Projectile & Gun Tube
- Duration of Contact Stress At Given Location on Projectile Bourrelet

Contact Stress is Determined by:

- Projectile Longitudinal Acceleration
- Spin²
- Projectile Mass
- Barrel & Projectile Geometry
- Projectile Center of Gravity Offset WRT Barrel Centerline

Contact Location & Time is Determined by:

- Barrel Rifling Twist (Gain) & Land Geometry
- Band Wear
- Bourrelet Length
- Interior Ballistic Cycle

Body Engraving Computational Approach

Use Previously Validated Computational Tools

- Interior Ballistics Code (Modified Baer-Frankle / IBHVG2)
- Rotating Band Wear Analysis (e.g. Wolf-Cochran)

"Record Keeping" For Fwd Bourrelet Stress

- Divide Bourrelet into 4000 "Bins"
- Contact Location Reference vs. Time Known Prior to Run
 - » Function of Local Band Wear & Twist Angle
- Contact Area vs. Engraved Depth Known Prior to Run
 - » Engages Additional Bins as Body Engraves

>>

If Stress-Time Product on Contacted Bins is Above "Threshold", Increment Engraving to Next Land Set

NDIA 4-99

9

Engraving Model "Details"

If you can't get a bigger Target...

Radial View of Rifling Land on Fwd Bourrelet

End View of "Flattened" Land / Bourrelet Interface

Comparison of Spin² Integral For Various Tubes

Body Engraving Computational Model

If you can't get a bigger Target...

- Read Initial Conditions
- Compute Contact Movement vs. Travel
- Compute Contact Area vs. Engraved Depth
- Compute Interface Geometry
- Step Thru Int. Ballistic Cycle, Accumulate Stress Time Product on Contacted Bourrelet Bins
- Increment Engraved Depth When Stress-Time Product Exceeds "Threshold"
- Compute New Interface Geometry (CG, Area)
- Continue Until Muzzle Exit

•

Engraving Model "Calibration"

If you can't get a bigger Target...

Large Caliber

- Oct '97 155mm Test Firing Series
- 48 L&G Tube, Top Zone, 22.5 Cal/rev Constant Twist
- Steel Body Projectile Recovered w/ 0.005" Body Engraving

Medium Caliber

- Late 70's Measured Body Engraving, GAU-8 Aluminum API
- Original 18 L&G Tube, 0.010" Thermal Expansion, Constant Twist
- Tactical 22 L&G Tube, 0.010" Thermal Expansion, 6.0-9.9 Deg Gain Twist

Assume: CG offset = 0.005" (Typical);

Adjust Engraving Stress-Time Threshold

until Observed Engraving is Approximated

Use of Body Engraving Model

- Effect of Reduced Exit Angle for Constant Twist Tubes?
- Effect of Number of Lands & Grooves on BE?
- Comparison of Constant Twist vs. Gain Twist Tube?
- Effect of Obturator/Band Leakage on BE?
- Effect of Gain Twist on BE with Leaks?

Effect of Exit Angle For Constant Twist Tubes

Conclusion: No Body Engraving Benefit From Reduced Twist Angle

Due to Reduced Contact Point Movement

Effect Of # L&G On Body Engraving

Conclusion: More Lands & Grooves Increases Body Engraving (w/ same G/L Width Ratio)

Can Gain Twist Reduce Body Engraving?

Conclusion: For Fixed Exit Angle & Given Initial CG Offset,
Gain Twist Reduces Body Engraving

Does Band Leak Affect Body Engraving?

Conclusion: 1) Band Must Leak Early in Travel to Increase Body Engraving

2) Obturator Improvements Should Reduce BE Significantly

Body Engraving Caused By Leakage With Constant & Gain Twist Tubes

If you can't get a bigger Target...

Conclusions:

- 1. Leak Must Occur Early in Travel to Increase Body Engraving
- 2. Gain Twist Reduces B.E. From Leaky Band/Obturator

Medium Caliber Body Engraving

If you can't get a bigger Target...

- Gain Twist is Critical to Prevent Body Engraving of Aluminum API Carrier
- Dispersion & Barrel Life Significantly Improved with Gain Twist Tube

Observations

- No Engraving Difference w/ Constant Twist Tubes
 - 22.5 cal/rev & 20 cal/rev Constant Twist Tubes Have Same BE
 - Reduced Spin Load Offset By Reduced Contact Movement
- Obturator Must Fail Early in Travel to Affect FWD Bourrelet Body Engraving in Artillery Projectiles
- Improved Gas Seals Should Significantly Reduce BE
- Gain Twist Reduces BE w/o Leaks
- Gain Twist Reduces BE w/ Leaks
- Lower # of L&G Reduces BE

Conclusions:

- Simple File Construction, Rapid Computation
- Avoids FEM Re-meshing & Element Removal
- Body Engraving Model Predicts General Trends That Agree With Observed Body Engraving Behavior
- A Little Bit of Rifling Gain Goes A Long Way Preventing Body Engraving
- Rifling Profile Must Balance Contact Movement & Band Wear, Leakage Due to Band Wear is Critical

•